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1 Introduction and Acknowledgements

This file serves as my lecture notes and notes for Trimester 3 Group Theory Elective
for the 2022-2023 School year. These notes should not serve as a standalone learning
instrument for Group Theory (as there are hundreds out there on the internet) but rather
a supplement to taking the Group Theory elective at Bergen Academies. I included
additional exercises to supplement your understanding of certain sections and also a
section highlighting the most humorous aspects of each class to add a personal touch to
the curriculum. This text is best consumed on a PDF reader to take advantage of the
hyperlinks and table of contents.

I taught four classes in total: investigating the symmetries of regular polygons (Class
1), going over selected exercises on abelian groups and subgroups (class 5), the dihedral
group and its conjugacy classes (class 11), proof of burnside’s lemma and standard
problems with burnsides lemma (class 19). I also gave a few sections like all groups of
order 4 (class 7) homomorphism and isomorphism (class 9).

Thank you to the class for being wonderful listeners and participants. Thank you to Ms.
Pinke for giving me the motivation to grow and care for this project. Most importantly,
thank you to Dr. Abramson for trusting me with teaching his class. Without him, none
of this would have been possible. I have only him to thank for my improved typesetting
and my improvement in giving lectures.
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2 Monday, March 20th (Class 2)

§2.1 Class One Recap

The first day of class was investigating the symmetries of regular polygons. We showed
that for a regular n-gon, there would be 2n symmetries: n rotations by 2π

n and n reflections
about each line of symmetry in the polygon. Rather than writing a day of notes on this
investigation, we can classify this more formally with terminology learned in the second
class.

§2.2 Definitions

Definition 2.2.1. A set G with a binary operation · is called a group if the following
holds:

1. G is closed under ·, i.e, ∀g, h ∈ G g · h ∈ G

2. G is associative under ·, i.e, ∀g, h, j ∈ G (gh)j = g(hj)

3. G has an identity (often denoted as e or eG but referred to by Jeremy as 1) which
menas ∀g eg = ge = g

4. Every element of G has an inverse, i.e ∀g ∈ G ∃g−1 ∈ G gg−1 = g−1g = e

Furthermore, a group is abelian if its elements commute, i.e. ∀g, h ∈ G gh = hg.. If
elements do not commute, then the group is nonabelian

Remark 2.2.2. It is absolutely vital to get familiar with the quantifier definitions for the
conditions to be a group. A lot of proofs that we do in class will call upon them.

§2.3 Examples

There are lots of examples of groups that we are already familiar with. If we think about
the binary operation of addition, we can say that the following are groups:

• (Z,+)

• (R,+)

• (Q,+)

• (C,+)

Notably missing from this list is (N,+). This is not a group as it does not have an
identity element, 0, nor does it have inverses, negative numbers.
If we consider multiplication, we must remember to take zero out of our set (which

will be denoted by putting an x at the top right corner) as zero does not have an inverse.

• (Rx,×)

9
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• (Cx,×)

• (Qx,×)

If we consider using modular arithmetic, then (Zn,+) for n ∈ N is a group (notably,
our first group with finitely many elements). Similarly, for p prime, (Zx

p ,×) is also a
group. The rationales for why inverses exist largely rely on number theory.

If we recall our work from day one, we can claim that given a regular n-gon, the set of
all symmetries under composition is a group. We can split this into two options: just
rotating, or both rotating and reflecting. We did not delve into this group but these
groups will recieve special attention on a later date.

Furthermore, we can also use a set of matricies with the operation of matrix multiplica-
tion. While these groups have specific names, right now we are putting the qualification
that these matricies are n by n and invertible, or more specifically having nonzero
determinant (do not worry if you do not know how to multiply matricies or what a
determinant is, this will be covered later in the course). Notably, this group is nonabelian.

§2.4 Symmetric Group

Let n ≥ 2 be a natural number. Let

Sn = {all permutations of (1, 2, ..., n)}

where the group operation is composition. What might the elements of S3 look like?
Well, we need to track where individual elements track after they are permuted. Thus,
the notation of the 6 elements of S3 look like

(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)
.

Composition of these elements means doing these permutations from right to left.
What this usally involves is tracking one element’s journey. Consider(

1 2 3
2 1 3

)
·
(
1 2 3
3 1 2

)
Let’s track the journey of 1. We read from the top right and see what is vertically

below 1. This means that starting at one, this permutation will bring one to 3. Then we
must do the next permutation. We see that three goes to three. This means our journey
of one is 1 → 3 → 3. Similarly, our journey for 2 is 2 → 1 → 2 and our journey for 3 is
3 → 2 → 1. Thus, (

1 2 3
2 1 3

)
·
(
1 2 3
3 1 2

)
=

(
1 2 3
3 2 1

)
.

Remark 2.4.1. Often times the operation that we have with a group is composition.
Function composition is essentially associative by definition, so we often times leave that to
the side while proving something is a group.

What are the inverses of elements and what is the identity of the group? Evidently,(
1 2 3
1 2 3

)
will be the identity as it is telling us to not permute any elements. If we

10 10
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wanted to find the inverse of an element, say for example

(
1 2 3
2 3 1

)−1

, how would we

go about that? Daniel had the visualization to imagine flipping the rows and rearranging
them back into order. This makes sense intuitively, as we want all of the right arrows of
where we are permuted to be flipped, so now 2 → 1, 3 → 2, and 1 → 3. Thus, the inverse
of that element is (

1 2 3
2 3 1

)−1

=

(
2 3 1
1 2 3

)
→

(
1 2 3
3 1 2

)

Remark 2.4.2. To find how many elements are in Sn just remember that this is a group of
permutations, meaning there are n! elements.

§2.5 Group Lingo

Definition 2.5.1. The order of a group is the number of elements in a group, referred
to as |G|. If the group does not have finitely many elements, it has infinite order.

Definition 2.5.2. H is a subgroup of G (denoted as H ≤ G) if

1. The elements of H are a subset of the elements of G

2. H itself is a group under the same operation as G

An example of a subgroup would be the even integers being a subgroup of the integers
under addition, or that (2Z,+) ≤ (Z,+)

§2.5.1 Subgroups of (Z,+)

Theorem 2.5.3

Except for {0}, the groups (nZ,+) for n ∈ N represent the complete list of subgroups
of (Z,+).

Proof. We must have 0 (as we need an identity element). If we are to have any nonzero
elements, we must have both positive and negative elements. By the well-ordering principle
(do not worry if you do not know what this is, it is unnecessarily fancy mathematical
machinery) we must have a least positive element, which we can call k. Our claim is that
having this element must force the set to be kZ. If we said have some n for which k ∤ n,
then we must have an element less than k as n (mod k) must be in the set and it is less
than k but positive.

§2.6 Kinda Sorta

We will delve much more into the topic of groups being isomorphic, but to describe similar
groups we will call them “kinda sorta similar”. The main idea is that we can create a
one-to-one correspondence. If we imagine a clock (which Dr. Abramson conveniently
had on the ground), we could consider two actions of symmetries: rotational symmetries
of a 12-gon, or adding hours together, which is (Z12,+).
Furthermore, the two groups which we previously called subgroups are kinda sort of

similar. As Tony and Daniel said, if you imagine scaling or dilating everything by two
you can go from the integers to the even integers.
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After a wordle, we decribed the group of addition mod n and rotations of an n− gon
to be something known as cyclic, which will be expanded upon later.

§2.7 Exercises

Exercise 2.7.1. Prove (semirigorously) that (Cx,×) is a group. Try not to look at your
notes when looking for the conditions of a group!

Exercise 2.7.2. Find

(
1 2 3 4 5 6 7
3 2 1 5 6 4 7

)17

.

Exercise 2.7.3. Provide a rationale why ({cisθ | θ ∈ R},×) ≤ (Cx,×) (remember, you
must show why both are groups!)

12 12



3 Thursday, March 23rd (Class 3)

§3.1 Group Properties

Rather than looking at specific groups we will look at group properties in general.

Theorem 3.1.1

Let G be a group with identity e.

1. The identity element is unique

2. Inverses are unique and demonstrate why a left inverse must be a right inverse

3. Why do we need associativity to define x3 for x ∈ G

a) How can we talk about xn in general? Do exponent rules work?

Proof. 1. Assume for the sake of contradiction that in addition to e we have an element
ẽ which is distinct from e but also an identity. Because e = e, we know that ẽe = e,
because ẽ is an identity. However because e is also an identity, we have that ẽ = e,
meaning that they are not distinct. This contradicts our initial assumption that
we had atleast two distinct identities, meaning that the identity element is unique.

2. Assume for the sake of contradiction that in addition to g−1, we have another
element g′−1 (tildes sadly did not render well) that is also the inverse of an element
g. Since e = e, we can rewrite e as both g′−1g and g−1g on the left and right sides
of the equal sign. But if we multiply on the right side by g−1, we can simplify:

e = e

g′−1g = g−1g

(g′−1g)g−1 = (g−1g)g−1

g′−1(gg−1) = g−1(gg−1)

g′−1(e) = g−1(e)

g′−1 = g−1

This contradicts our inital assumption that there were atleast two distinct inverses,
meaning inverses are unique.

3. We mainly ‘talked through this’ in class, but if we want x3 = x · x · x, we want
(x ·x) ·x = x · (x ·x). Because of associativity, we can sort of ’recursively/inductively’
define xn as x∗xn−1. Because we are associative, xn will be legal with this definition,
and then prove exponential laws. We can similarly define x−n = (x−1)n

Problem 3.1.2. Suppose G is a group whose elements are a, b, c, and e. and suppose

a2 = b2 = c2 = e.

Write a multiplication table for G

13
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Solution.

e a b c

e e a b c
a a e ? ?
b b ? e ?
c c ? ? e

Here is the multiplication table. The goal of this exercise was to figure out constraints
on ?’s must be. We claim that every row and every column in this group must have each
element (i.e, e, a, b, and c in some order). For notation, the column is what we multiply
on the right and the row is what we multiply on the left. Thus, we can rewrite the table:

e a b c

e e a b c
a a e ab ac
b b ba e bc
c c ca cb e

We have the underlying assumption that e ̸= a ̸= b ̸= c. Lets take a look at what the
element ab could be.

• If ab = e, then b = a−1 = a, which contradicts our assumption

• If ab = a then b = e, which contradicts our assumption

• If ab = b then a = e, which contradicts our assumption

• Since the group is closed, ab = c. By multiplying by a on the left on both sides,
b = ca. By multipling by c on the left on both sides, cb = a. We can continue this
process to see that multiplying two nonidentity elements always yields the third.
We can now complete the table.

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Remark 3.1.3. Notice that the group is abelian as we are symmetric across the diagonal.
Could we have proved this from the get go? This will be left as an exercise.

The next three exercises did not recieve much discussion in class. They often follow
from multiplying on both sides by what seems obvious.

Exercise 3.1.4. Prove (gh)−1 = h−1g−1

Exercise 3.1.5. Show if g and h commute (i.e. gh = hg), then (gh)n = gnhn

Exercise 3.1.6. Simplify (g−1hg)n

14 14
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Remark 3.1.7. This act of sandwiching h between g−1 and g appears so often it gets a
special name: g−1hg is reffered to as conjugating h by g. We will talk about this in much
greater detail later in the course.

Problem 3.1.8. If G is finite, for any g in G, prove ∃n ∈ N such that gn = e

Solution. Let the order of G be k., i.e |G| = k. Consider the set of the first k + 1 powers
of an arbitrary element g. The group G is closed, meaning all powers of g must be in
the group. However, there must be a repeat as G has only k elements. Suppose that for
n < m ≤ k + 1, gn = gm. Thus,

gn = gm

g−ngn = g−ngm

e = gm−n

Since m,n ∈ N and n < m, m− n is a natural number power of g that is equal to the
identity.

Remark 3.1.9. The style used in this proof is most commonly referred to as the Pidgeon-
hole Principle. You have k holes and k + 1 pigeons, so there must be a hole with two
pigeons.

Remark 3.1.10. Dr. Abramson labeled this as the most important problem for today’s
class. This will appear more in detail when we discuss the order of elements.

§3.2 Exercises

The first three exercises were taken from the ’Section 2.2 Exercises’ of David Nash’s
Group Theory textbook.

Exercise 3.2.1. Let G be a group. Prove that if (ab)2 = a2b2 for all a, b ∈ G then G is
a Abelian.

Exercise 3.2.2. Prove that if G is a group with |G| ≤ 4, then G is an Abelian.

Exercise 3.2.3 (*). Show that if G is a finite group with |G| even, then there exists
some g ̸= e ∈ G such that g2 = eg

The last exercise arises from my own brain after playing around with the multiplication
table.

Exercise 3.2.4. Prove that a (not necessarily finite) group where every element has
order 2 (i.e ∀g ∈ G, g2 = e) must be necssarily be abelian. (Hint: Use Exercise 2.1.4.)

§3.3 Funny Stuff

Remark 3.3.1. The T.A. test is that if you find food you must offer it to the teacher before
you eat it yourself. I miserably failed the TA test.

Remark 3.3.2. If you are caught with cake in the hallway you will be met with a hearty
”HA!”

15 15





4 Monday, March 27th (Class 4)

§4.1 Order (of elements)

Recall if G is finite then ∀g ∈ G ∃n ∈ N, gn = e.

Definition 4.1.1. Call the smallest such natural number n such that gn = e the order
of g and write o(g) = n

We proved last class (from our pigeonhole argument) that o(g) ≤ |G|

Theorem 4.1.2

If gk = e, then o(g) | k

Proof. As gabe said, if o(g) = k, then we’re done. Otherwise, we use the division
algorithm on k which says that k = (o(g))q + r for some natural numbers q and r < o(g).
Thus,

g((o(g))q+r) = g(o(g))q ∗ gr = gr

r < n =⇒ r = 0

Problem 4.1.3. If o(g) = n, what can we say about

1. g−1

2. o(gk)?

Solution. 1. g−1 = e ∗ g−1 = gn ∗ g−1 = gn−1

2. Suppose gcd(n, k) = r. Necessarily, for some x and y, k = rx and n = ry. We have
grx and we know gry = e, because gcd(x, y) = 1, the smallest power we can raise
grx to is y, meaning o(gk) = n

gcd(n,k)

Exercise 4.1.4. What are the orders of the elements of

• (Z5,+)

• (Z6,+)

• (Z×
8 ,×) (all of the elements relatively prime to 8, or having a multiplicative inverse)

• The symmetries of a square?

Remark 4.1.5. All of the orders we have encountered divide the size of the group... we can
conjecture for now that o(g) | |G| with G a finite group. We will prove this in 1-2 classes.

Recall the definition of a subgroup (found in 2.5.2).

Definition 4.1.6. If g ∈ G, let

⟨g⟩ = {gn = n ∈ Z}

17
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Theorem 4.1.7

⟨g⟩ is a subgroup of G, which we refered to as generated by g

Proof. We are closed as we are multiplying g with itself. We have inverses as any gn

has g−n. We have g0 = e. Associativity follows from the fact that G is already a group,
meaning its operation must be associative

Exercise 4.1.8. Classify the subgroups generated by each of the elements in

1. (Z5,+)

2. (Z6,+)

3. (Z×
8 ,×)

4. The symmetries of a square

Exercise 4.1.9. 1. In (Z,+), what is ⟨11⟩?

2. In (C×,×), what is ⟨cis 60◦⟩?

Remark 4.1.10. ⟨cis 60◦⟩ is very very similar to the rotations of the hexagon!

Definition 4.1.11. A group is cyclic if it can be generated by a single element.

What groups are cyclic? Well, Zn = ⟨1⟩ and Z = ⟨1⟩, but definetly not C or the
symmetries of the square.

Theorem 4.1.12

The only subgroups of cyclic groups are themselves cyclic.

Proof. AssumeG is a cyclic group where |G| = n, which can be written as {e, g, g2, g3, ...gn−1}
for a generator g. Suppose H ≤ G. H must necessarily consist of power of g. If H = e,
we have what we want (as e = ⟨e⟩). Similarly, if g ∈ H,H = G, which means H is cyclic
(as G is cyclic). Otherwise, let k > 1 be the smallest k such that gk ∈ H. It remains to
show ⟨gk⟩ = H.

Let gt be an arbitary element in H. Because of the divison algorithm, t = mk + r for
0 ≤ r < k. but since gt ∈ H, gmk ∈ H =⇒ g−mk ∈ H =⇒ gr ∈ H. But since k is the
least element, r = 0. Thus, any power of an element must be divisible by k. This shows
that ⟨gk⟩ = H.
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§4.2 Exercises

Exercise 4.2.1. (Exercise 2.5.96 in the Textbook) Let G be a group and let H ≤ G

1. If g ∈ G, show that the set g−1Hg = {g−1hg | h ∈ H} is a subgroup of G (the
subgroup g−1Hg is known as a conjugate of H by g)

2. Show that the subset N(H) = {g ∈ G | g−1Hg = H} is a subgroup of G

3. Show that H ≤ N(H)

Exercise 4.2.2. (Exercise 2.5.101 in the Textbook) Let G be a group and let H ≤ G.
True or false, and why (TorF & y)?

If G is abelian, then H is also abelian. If H is abelian, then G is also abelian

If something false, identify a counterexample.

The next exercise is important to our discussion of cosets (which will be defined in a
few classes).

Definition 4.2.3. A binary relation ∼on a set A is a predicate with two arguments (for
example for x, y, z, a ∈ A, x ∼ y = T or z ∼ a = F are examples of statements with a
binary relation). An equivalence relation is a relation that is symmetric, reflexive, and
transitive.

• Symmetric: ∀a, b ∈ A, a ∼ b =⇒ b ∼ a.

• Reflexive: ∀a ∈ A, a ∼ a.

• Transitive: ∀a, b, c ∈ A, ((a ∼ b)(b ∼ c)) =⇒ a ∼ c.

While < is a relation on R, it is not reflexive. = is an equivalence relation on R.

Exercise 4.2.4. (Exercise 2.5.105 in the Textbook) Let G be a group and let H be a
subgroup. Consider the relation ∼ defined on G by declaring that x ∼ y if there exists
some h ∈ H such that y = hx. Prove that ∼ is an equivalence relationship.

19 19





5 Thursday, March 30th (Class 5)

Today, I’ll be lecturing! We will first go over a few of the exercises I have selected over
the last few classes.

§5.1 Problem Review

Problem 5.1.1. Let G be a group. Prove that if (ab)2 = a2b2 for all a, b ∈ G then G is
a Abelian.

Solution. This problem serves as an example of what to do when you encounter any
group theory fact which may not seem immediately obvious. It’s important to remember
what the definitions of the objects you are working with are. Furthermore, if you are
trying to prove something that involves proving it for all elements over a set, take an
arbitrary element of the set and show that it works.

We have ∀a, b ∈ G (ab)2 = a2b2

We expand everything and use inverses:

abab = aabb

bab = abb

ba = ab

This is the condition for being abelian, so we are done.

Problem 5.1.2. Prove that a (not necessarily finite) group where every element has
order 2 (i.e ∀g ∈ G, g2 = e) must be necssarily be abelian.

Solution. Let a, b ∈ G. To prove a group is abelian, we want to show that ∀a, b,∈
G, ab = ba. We know that since ab ∈ G, (ab)2 = e, meaning that

(ab) = (ab)−1 = b−1a−1.

But since a and b have order two, b = b−1 and a = a−1. Thus, ab = ba

Problem 5.1.3. Show that if G is a finite group with |G| even, then there exists some
g ̸= e ∈ G such that g2 = eg

Solution. The solution to this problem largely involves a trick. Consider grouping every
element with it’s inverse. So instead of writing the set as

G = {e, g1, g2, g3, g4...}

Write the set as

G = {e, g1, g−1
1 , g−1

2 , g3, g
−1
3 , ...}

If we consider this pattern, e has nothing to pair up with as it is technically its own
inverse. Thus, this exaplins the missing element in the list– we know there must be an
element which does not pair up with another as it is its own inverse. Since it is not the
identity, it must have order two.

21



Group Theory Krish Ramkumar (2022-2023 Trimester 3)

§5.2 Categorizing Subgroups

Theorem 5.2.1

Let G be a group and let H ⊆ G be a non-empty subset. Then, the following are
equivalent:

1. H ≤ G

2. For all x, y ∈ H we have both xy ∈ H and x−1 ∈ H

3. For all x, y ∈ H we have xy−1 ∈ H

4. For all x, y ∈ H we have x−1y ∈ H

Remark 5.2.2. Let’s first think of clever ways to use our knowledge of logic to reduce
the amount of work we need to do, as if we showed both directions of each statement
to eachothe it would be 4∗3

2 ∗ 2 = 12 proofs.
The first clever option is to show that 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 1. This

uses hypothetical syllogism to allow us to jump around to any forward and backward
implication. The second option is to show 1 ⇐⇒ 2, 1 ⇐⇒ 3, 1 ⇐⇒ 4 and use
hypothetical syllogism to jump around and show that 2 ⇐⇒ 4. This helps us if one
of our equivalent conditions is especially strong or easy to work with.

§5.3 Intersecting Subgroups

Theorem 5.3.1

Let H and K be subgroups of G. Then, H ∩K is a subgroup of G

Proof. The intersection has e is nonempty. Everything else follows by assuming that
something is in the set. The inverses must necessarily exist and the products must
necssarily exist.

§5.4 Exercises

No exercises for this class (as thats what the entire class was for!) Next class we will
develop more theory with subgroups with the idea of cosets.
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6 Monday, April 3rd (Class 6)

Definition 6.0.1. Let G be a group and A ⊆ G. A left coset of A is (for some g ∈ G )

gA = {ga | a ∈ A}

Similarly, a right coset of A is

Ag = {ag | a ∈ A}

For example in (Z6,+) where A = {1, 3}. Then 1 +A = {2, 4}.

Theorem 6.0.2

Lagrange’s Theorem Suppose G is finite and H ≤ G. Then |H| | |G|

Given H, consider all possible left cosets, i.e {gH | g ∈ G}. Lets first do an example
with 6Z ≤ Z. Our left cosets will look like

6Z
1 + 6Z
2 + 6Z
3 + 6Z
4 + 6Z
5 + 6Z

...

It turns out that our ‘horizontal dots’ could just be a period, as thats where we stop.
Furthemore, if we take the intersection of any two left cosets, they will be the empty set.

Lemma 6.0.3

Given two left cosets g1H and g2H either

• g1H = g2H

• g1H ∩ g2H = ∅, referred to as being disjoint.

In english, if two left cosets are not disjoint, they are the same.

Exercise 6.0.4. • When is gH = H?

• When is g1H = g2H?

• Suppose k ∈ g1H ∩ g2H

Proof. If their intersection is empty, then we are done. Otherwise, theres an element
they have in common. suppose ∃h1, h2 such that k = g1h1 = g2h2. So far, we have a
single element in common. Let g2hi be an arbitrary element of g2H. Necessarily, g2hi =
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g2h2h
−1
2 hi = g1(h1h

−1
2 hi) and because (h1h

−1
2 hi) ∈ H (because of closure), g2hi ∈ g1H.

Similarly, let g1hj be an arbitrary element of g1H. g1hj = g1h1h
−1
1 hj = g2(h2h

−1
1 hj),

and since (h2h
−1
1 hj) ∈ H, g1hj ∈ g2H. Thus, both sets are subsets of eachother and thus

they are the same set.

Its also easy to see that |gH| = |H| (theres a one to one correspondance, as Joy has
mentioned). We can find every g in some left coset (take gH for example). So, different
cosets are disjoint. G is a union of disjoint cosets, which are all the same size. Since we
are adding an integer number of cosets to get G, it has been shown |H| | |G|.

Corollary 6.0.5

Suppose G is finite and g ∈ G. Then,

o(g) | |G|

where o(g) was the order of that element.

Proof. Consider ⟨g⟩ = {e, g, g2, ..., go(g)−1}. We proved that this is a subgroup, and since
g has order n, |⟨g⟩| = o(g). We have a subgroup the size of o(g), so by Lagrange’s
Theorem o(g) | |G|

§6.1 Isomorphic

Right now, we only have a qualitative definition of being ’isomorphic’. It is essentially
when two groups for all intents and purposes are the same. Our example was Z12 and
the rotations of a dodecagon.

Theorem 6.1.1

There is a ”unique” (up to isomorphisms) group of order p for each prime p and it
is cyclic.

Proof. We need a group with only e and the group itself as subgroups. If we were to take
a non-identity element and try to ‘make’ a subgroup from it, it would necessarily generate
the whole group. A group that is generated by a single element is cyclic! Furthermore,
Any element necessarily has order 1 or p. If order 1, youre the identity, if order p youre

a generator. The only subsets of these groups are the identity element and the group
itself.

Problem 6.1.2. In Z2023, find all possible orders of elements & one element of that
order. Then add them, take it mod 1000, and bubble in your answer.

Solution. (1 + 17 + 289)(1 + 7) = 2, 456 which is congruent to 456 mod 1000.
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§6.2 Exercises

Exercise 6.2.1. What are the subgroups of the rotations of the dodecagon?

Exercise 6.2.2. What are the subgroups of the symmetries of squares? (We will classify
this group better later)

§6.3 Funny Stuff

Remark 6.3.1. If you introduced two isomorphic groups to their mom, their mother
wouldn’t be able to tell them apart.

Remark 6.3.2. Zp passed the ‘50% of its letters are the same’ test which cyclic also passes.
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7 Thursday, April 6th (Class 7)

§7.1 All groups of order 4

Exercise 7.1.1. Identify as many groups of order 4 that you know.

A few examples would include Z4,Z×
5 ,Z

×
8 ,Z

×
12, and the rotations of a square.

Let G be a group of order four. From our corrolary of Lagrange’s Theorem, we
know that all elements must have order 1, 2, or 4. If an element has order 4, we must
necessarily be the cyclic group of order 4 as a single element generates all elements. If
not, every nonidentity element has order 2. This set would look like {e, a, b, c} where
a2 = e, b2 = e, c2 = e. We have identified a group like this and have already created a
multiplication table.

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Furthermore, if we took a square with rotation by 180, reflection over the y - axis, and
reflection over the x - axis, this is what it’s multiplication table would look like.

§7.2 Direct Product

Definition 7.2.1. Given groups G and H, the direct product × is defined as follows:

• The underlying set is the Cartesian product, G×H . That is, the ordered pairs
(g, h), where g ∈ G and h ∈ H

• The binary operation is defined componentwise.

I.e, (g1, h1)(g2, h2) = (g1g2, h1h2) with their respective operations

Theorem 7.2.2

G×H is a group under their prescribed operation. Furthermore, if G and H are
abelian, then G×H is abelian.

Proof. We will show closure, identity, inverses, and associativity. (g1, h1)(g2, h2) =
(g1g2, h1h2), since G and H are closed G×H. Furthermore, since the operations in G
and H are associative G × H is associtative. We can find the identity by taking the
identities eG and eH , and inverses can be shown in the same way.

Exercise 7.2.3. Make a multiplication table for Z2 × Z2 (also known as the Klein
4-group, the same Klein with the same bottle)
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Theorem 7.2.4

G×H ∼= H ×G

We cannot prove this yet as we don’t have a definition, but since these are essentially the
same we can guess this for now.

Exercise 7.2.5. Make a multiplication table for Z3 × Z2.

As Michael said, this is a cyclic group generated by (1, 1). If its cyclic, its isomorphic
to Z6. Remember, cyclic times cyclic is not ALWAYS cyclic ( consider Z2 × Z2). We
eventually want to make a conjecture about something that is isomorphic to Zm × Zn.
We can guess that when m and n are relatively prime, Zm × Zn

∼= Zmn

Theorem 7.2.6

Let g ∈ G and h ∈ H. Given that o(g) = m and o(h) = n, show that o(g, h) =
lcm(m,n).

Proof. We have shown for g ∈ G, gk = e if and only if o(g) | n. Thus, (g, h)k = e =⇒
(gk, hk) = (e, e). We can start looking at the elements individually, meaning m | k and
n | k. This means that if an element were to be the order of our elements, it must be a
multiple of both m and n. From number theorey, m,n | k =⇒ lcm(m,n) | k. It thus
follows that since the order is the least, our order is the least common multiple.

§7.3 All groups of order 6

We proceed in a similar fashion analyzing the order of elements. We have already proved
that if a group has even order it must have an element of order 2.

If we are abelian, we could be cyclic (thats one type of group done!), but what if every
element was order 2 (we have proved that this is necessarily abelian)? Well consider
elements e, x, y. Since G is abelian, xy = yx. This means that

{e, x, y, xy} ≤ G

But that isn’t possible as a subgroup of order 4 cannot live in groups of order 6 (this
violates lagrange)!

We also know the intersection of two subgroups is a subgroup. We know we have a
subgroup of order 2. What if we had a subgroup of order 3 (i.e, there are no elements
of order 6)? Intersect, you must get a subgroup, meaning their intersection is order 1
(as intersection is GCD) meaning its {e} . Thus. we have cyclic subgroup or order 2,
cyclic subgroup of order 3. None of the elements nonidentity elements can be eachother.
Thus, we have elements e, a, b, b2 and because of closure, ab, ab2, b. Somethings must be
equal here (or else we aren’t order 6). If ab = ba, every element must commute (as the
a’s commute with themselves and b’s commute with themselves, and they commute with
eachother). Since b is of order 3 and a is order 2, if ab is not the identity and we are in a
commutative group, (ab)k = akbk =⇒ 3, 2 | k =⇒ o(ab) = 6. Since we have an element
of order 6, this is the cyclic group!

What if ba = ab2? If we multiply by a on the left and b on the right, we have that

abab = a2b3 = e
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This means o(ab) = 2. We also know that (ba)(ab2) = beb2 = b3 = e. Since we
supposed they are equal, this means o(ba) = 2. Thus, we are in a group where we have
three elements of order 2, and two elements of order 3 (as o(b2) can’t be anything else).
Is everything legal? Have we classified another group? It turns out that we have! This
is what we have previously referred to as the symmetries of a triangle, which has three
reflections and three rotations. Whats especially interesting to note is that this group is
nonabelian. Since we have classified everything up to this, we just found the smallest
finite nonabelian group!

§7.4 Fun Stuff

Remark 7.4.1. Group theorists cannot find every single group ever so they settle for
classifying all groups up to isomorphism for a certain order
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8 Monday, April 17th (Class 8)

We spent some time cleaning up our proof of all groups of order 6. Our conclusion
was that the two groups up to isomorphism are the dihedral group of order 6 (i.e the
symmetries of a triangle and Z6, referred to as the cyclic group of order 6.

§8.1 Symmetric Group (Revamped!)

Recall our definition of a cyclic group that for a natural number n ≥ 2

Sn = {all permutations of (1, 2, ..., n)}

where the group operation is composition. We have already proved that this is closed,
has an associative operation, has an identity, and that each element has an inverse. We
eventually want to look into the order of elements. Before we do this, we will develop
alternate notation, often referred to as cycle notation.

§8.1.1 Cycle Notation

Consider the permutation (
1 2 3 4 5
2 3 1 5 4

)
.

If we do this permutation upon itself, we can trace the path of a single elemet. 1 goes
to 2, which goes to 3, which goes back to 1. Similarly, 4 goes to 5, which goes back to
4. These are two cycles, meaning we can refer to the entire permutation as (123)(45).
This explicitly states that this permutation has a cycle of the elements 1, 2 and 3 and a
cycle of 4 and 5. Furthermore, you can follow the path of a single element by reading the
number immediately to the right of the number you want to track. For example, 2 must
go to 3. Additionally, the notation says that the the parenthesis are like a portal– once
you go through a right parenthesis, you are at the left side parenthesis. This means that
if we track 5 and read one to the right, 5 goes to 4.

Remark 8.1.1. If an element a does not change positions, rather than writing (a) in the
cycle notation, we simply leave it out. This means that you cannot tell which orde symmetric
group you are in simply through the cycle notation.

Notice this is the exact same as (231)(54) as we chose to follow the path of 1 arbitrarily.
Furthermore, this is also the same as (45)(123)

Multiplication in cycle notation follows in the same way that multiplication of two
’permutation matricies’:(

1 2 3 4 5
2 3 1 5 4

)(
1 2 3 4 5
5 4 3 2 1

)
=

(
1 2 3 4 5
4 5 1 3 2

)
which we learned to compute by following the path of each element. Similarly, if we

write both in cycle notation, this would yield

(123)(45) · (24)(15) = (143)(25)
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This takes a while getting used to, but remember that you are following the path of a
single element. Begin with 1. 1 goes to 5, and then 5 goes to 4. Continue this process
with 4 (as we are trying to figure out the entire cycle 1 is in). 4 goes to 2, which goes to
3. Then, 3 goes to 3, which goes to 1. Thus, we have finished a cycle, as we are back at
1. Repeat this process with 2 (because it has not been identified by our previous cycle
‘exploration’, it must be in a completely different cycle)

Exercise 8.1.2. Compute (123456)(143562)

§8.1.2 The symmetric group of order 6

We have already classified all groups of order 6. Thus, S3 (which has 3! = 6 elements)
must be isomorphic to either the dihedral group of order 6 (the triangle) or Z6. These
six elements are:

S3 = e, (123), (12), (13), (23), (132)

We can guess that because (123)(12) = (13) and (12)(123) = (23), we aren’t commuta-
tive, meaning we must be isomorphic to the symmetries of a triangle.
To show why, we need to have the structure of an identity, 2 element of order 3, and

3 elements of order 2. Note that a cycle (123...n) has order n and is referred to as an
n-cycle (as each time you do the cycle, you move one more element down, so you have to
do it n times to get back to where you started). From what we wrote above, we have
exactly that structure! e has order 1. (123) and (132) are order 3 (as they’re 3-cycles),
and we have (12), (13) and (23) as our elements of order 2.

Exercise 8.1.3. Verify (123)2 = (132) and (23) = (12)(132)(132) = (132)(12). The
second was our property of the arbitrary ’second’ group of order 6 before we identified it
as a triangle (i.e ba = ab2).

§8.2 Fun Stuff

Remark 8.2.1. “n!” is pronounced as n (loudly). Joy should have picked up on that earlier
before she had to leave the room in shame.
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9 Thursday, April 20th (Class 9)

§9.1 More Cycle Notation

Problem 9.1.1. Compute (12)(1234...n)

Solution. Track the trajectory of 1 first. 1 goes to 2, 2 goes to 1, so 1 goes to itself.
N goes to 1, 1 goes to 2, so N goes to 2. The rest won’t be messed with due to the
multiplication, so we can get (234...n)

Notice that (1234...n) = (12)(12)(1234...n) = (12)(234...n). We decomposed an n cycle
into a n− 1 and 2 cycle. Similarly, (12)(234...n) = (12)(23)(34.....n).

Theorem 9.1.2

Any element in Sn can be written as a (nonunique) product of transpositions (i.e,
2-cycles). Furthermore, given an element of Sn, the number of transpositions in any
decomposition is always the same parity.

To see the extreme of why this is not unique, e can be written as a product of any
even number of transpositions (Such as (12)(12), (98)(98) = (12)(13)(13)(12)).

Proof. To prove this, we will show that every element in Sn can be written as a product
of cycles, and every cycle can be written as a product of transpositions. Because
permutations are 1 to 1 maps, when we follow the path of a single element we always
end up with a cycle. Thus any permutation is thus the product of cycles (and because
cycles are disjoint, they can commute with eachother).

The proof of the parity is within our reach but is quite complicated. We will return to
this at a later date.

Definition 9.1.3. An element of Sn is called even if it requires an even number of
transpositions and odd if odd. Define An to be

An = {even permutations in Sn}

Parity for these elements is known as ‘well defined’, a term that mathematicians
through around a lot to mean ‘makes sense’. Something can’t have both an even and
odd number of transpositions (due to the theorem we have not yet proved).

§9.2 Alternating Group

Theorem 9.2.1

An is a subgroup of Sn, and An is called the alternating group on n things. Further-
more, |An| = n!

2
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Proof. e is in the group. Furthermore if multiple two numbers with an even number of
transpositions, their product has an even number of transpositions. Finally,

((ab)(cd)(ef)...(yz))−1 = (yz)...(ef)(cd)(ab)

We can show that |An| = n! by using a coset. Take an arbitrary transposition (ab). It
is not immedietly evident that An ∪ (ab)An = Sn. (ab)An clearly has odd elements, but
is it all odd elements? Take an arbitrary element Z ∈ Sn which is odd. (ab)Z is even,
meaning it is in An. (ab)(ab)Z is in our coset, but that’s the same as writing Z, so every
odd element must be in this set. Thus they are the cosets are the same size and partition
the group, so they must each be half of n!.

What parity is an n − cycle? It is the parity of (n − 1) (this can be observed from
(123)=(12)(13)).

Theorem 9.2.2

An can be generated by its three-cycles. This means that every element of An can
be written as a product of its three-cycles.

Proof. Consider (ab)(cd) where they aren’t the same transposition. For the first case,
assume these are all different. Then,

(ab)(bc) = (ab)(bc)(bc)(cd) = (abc)(bcd).

If any of them are the same, combine them in the way that we are used to.

Remark 9.2.3. We may eventually use this fact the show that An is simple (if we last that
long)

§9.3 Vital Definitions

At this point, we arrive at a very important junction in our group theory career. We will
move into another level of abstraction by talking about conjugacy and normal subgroups,
which have lots of results about them. I would strongly reccomend to take some time
with these definitions and process them by doing exercises. These won’t go away.

§9.3.1 Homomorphism, Isomorhism, Isomorphic

Definition 9.3.1. A map φ from groups G to H (i.e φ : G→ H) is a homomorphism if
∀g1, g2 ∈ G,φ(g1g2) = φ(g1)φ(g2)

Some examples of homomorphisms include

φ : Z4 → Z4 s.t. φ(g) = 2 ∗ g

φ : Z → 17Z s.t. φ(g) = 289 ∗ g

φ : R× → {−1, 1} s.t. φ(g) = sign(g)

Exercise 9.3.2. Verify that these are homomorphisms
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Definition 9.3.3. An isomorphism is a bijective homomorphism. For a homomorphism
φ, it is a bijective map if it is is one-to-one, or injective, meaning that φ(g1) = φ(g2) ⇐⇒
g1 = g2 and a bijection is onto, or surjective, meaning that ∀h ∈ H ∃g ∈ G s.t. φ(g) = h.
Two groups are isomorphic if you can construct an isomorphism between them.

Remark 9.3.4. Understanding bijections is foundational for any math that involves sets.
Injectivity means that two items in the same domain cannot map to the same element. For
functions, this means the horizontal line test. Surjectivity means that every element in
our codomain is covered. Thus, y = x3 is a bijection while y = x2 is not. Furthermore,
remember that a wonderful property of bijections is that they have inverses.

Remark 9.3.5. When two groups are isomorphic, we have essentially the same structure.
The map that we create is a ’structure-preserving’ map from the properties it must satisfy,
giving a formal reflection of two groups being ‘the same in disguise’. This gives us the ability
to precicely determine when two groups have no differences.

§9.3.2 Index, Conjugate, Normal

Definition 9.3.6. Let G be a group and H be a subgroup. Define [G : H] to be the
index of H in G which is the number of distinct left cosets. Specifically for finite G,

|G| = |G : H||H|

Example 9.3.7

What is [Z : 17Z]?

Solution. As Michael mentioned, all of these cosets are the residue classes mod 17, of
which there are 17.

Theorem 9.3.8

Let H ≤ G, let g ∈ G. Define gHg−1 = {ghg−1 | h ∈ H}. Prove that gHg−1 ≤ G

Proof. We showed this a long time ago! We are associative as the operation in H is
associative. The identity is in there as the identity must be in H, meaning geg−1 =
e ∈ gHg−1. We are closed as gh1g

−1gh2g
−1 = gh1h2g

−1 (and since H is a subgroup,
h1h2 ∈ H). By the same logic we have inverses since ghg−1gh−1g−1 = e. Thus, we are a
subgroup.

Definition 9.3.9. Let G be a group, H1, H2 ≤ G, and g ∈ G, h ∈ H . An element b is
conjugate to an element a if there exists a g ∈ G such that b = gag−1. The conjugate of
h by g is the element ghg−1. The conjugate of H by g is the set

gH1g
−1 = {ghg−1 | h ∈ H},

which we have shown to be a subgroup. Two subgroups are said to be conjugate subgroups
if ∃g ∈ G where gH1g

−1 = H2
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Remark 9.3.10. Conjugate, conjugacy, and conjugation are hard and they take a lot of
getting used to. These will become even more important when we learn about conjugacy
classes and group actions.

Definition 9.3.11. We call H normal in G (H ⊴G) if for all g ∈ G, gHg−1 = H. H is
referred to as a normal subgroup.

Remark 9.3.12. In abelian groups all subgroups are normal. In nonablian groups it may
seem difficult to identify which groups are normal. We will go much more in depth to normal
groups. Understanding normal groups is vital as it helps us define quotient groups later
down the line.

All of these remarks aren’t here to scare you but to remind you the importance of
these abstract concepts. To command good understanding of these concepts you should
practice and get your hands dirty with them.

§9.4 Exercises

There are not many exercises we can do just yet without spending more time on these
things during class, but please familiarize yourself with the definitions.

Exercise 9.4.1. (Exercise 2.5.95 in the Book) Let G be a group and let H ≤ G.

1. Show that the subset N(H) = {g ∈ G | g−1Hg = H}is a subgroup of G (Remember,
this is not the same thing as g−1Hg!)

2. Show that H ≤ N(H). (HINT: Remember being a subgroup means that you are a
subset which is also a group. We already know that H is a group, so we only need
to show that H is a subset of N(H))).

Exercise 9.4.2. Prove for a homomorphism φ : G→ H that

1. φ(eG) = eH

2. φ(g−1) = (φ(g))−1

§9.5 Funny Stuff

Remark 9.5.1. If you wrote an unreasonably long acronym in your notes, it stood for “that
we will not prove today but at a later date”

Remark 9.5.2. The pronunciation of words like homogenous and homomorphism all use
the same long O sound (like go), NOT the short O sound (like on or top)
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10 Monday, May 1st (Class 10)

§10.1 Relations

Definition 10.1.1. A relation ∼ on a set X is a subset of ψ ⊆ X ×X (where elements
are in the form (a, b)) We say a ∼ b (or a is related to b) if (a, b) ∈ ψ

Definition 10.1.2. A relation is reflexive if ∀a ∈ X, a ∼ a. A relation is symmetric if
∀a, b ∈ X a ∼ b =⇒ b ∼ a. A relation is transitive if ∀a, b, c ∈ X, a ∼ b&b ∼ c =⇒ a ∼
c. If a relation is reflexive, symmetric, and transitive, we call it an equivalence relation.

Example 10.1.3 1. Let our set be Z. Define the relation a ∼ b =⇒ 7 | (a− b).
Is this an equivalence relation?

2. Let our set be the people in the world. x ∼ y if x an y are siblings.

3. Let our set be R×, and x ∼ y if x
y > 0.

Solution. 1. Yes, in fact this is our being equivalent mod 7.

2. This is not an equivalence relation, as you aren’t your own sibling and stepsiblings
exists, meaning we are not reflexive, we are symmetric, but we are not transitive.

3. Yes. This can be more simply stated as having the same sign.

Problem 10.1.4. Let a, b ∈ G. We say a is conjugate to b (written a ∼ b) if ∃ g ∈
G such that b = gag−1

Prove:

1. Conjugacy is an equivalence relation

2. Any two transpositions in Sn are conjugate.

Solution. Let b = gag−1 = g1cg
−1
1 . Conjugacy is reflexive (let g be the identity),

symmetric (let just multiply on the left by g−1 and on the right by g) and transitive
(a = g−1g1cg

−1
1 g = (g−1g1)c(g

−1g1)
−1.)

To solve the second part of the problem, we will return after developing a bit more
theory about the symmetric group.

§10.2 Symmetric Group

Let h ∈ Sn and a ∈ {1, 2, ...n}. Treat this permutation like a function where we look at
where a is taken by h, i.e h(a) = b. Let σ ∈ Sn. By inspection,

σ ◦ h ◦ σ−1(σ(a)) = σ(b)

More generally if h = (a1a2...ak) and we repeat this process many times, we can see that
conjugating h by σ leads to the cycle (σ(a1)σ(a2)...σ(ak)).
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What this tells us is that conjugating preserves cycle structure, meaning conjugating
transpositions gives us transpositions. So for two disjoint transpositions, i.e (ab) and
(cd).

(ac)(bd)(ab)(ac)(bd) = (cd)

Furthermore, if we want to show (123) is conjugate to (456), our element would be
(14)(25)(36). We simply construct the permutation which takes each element where we
want it to go.

§10.3 Conjugacy Classes

Definition 10.3.1. Given g ∈ G, the conjugacy class in g is the set of everything
conjugate to g, which is denoted by [g]. Because conjugacy is an equivalence relation,
these sets are either disjoint or equal.

In abelian groups, the conjugacy classes of an individual element would be themselves.
We can conjecture that everything with the same cycle structure is in the same conjugacy
class.
Let H1, H2 ⊆ G. H1 is conjugate to H2 (written H1 ∼ H2) if

∃ g ∈ G such that gH1g
−1 = H2

we previously showed that if H1 is a group, so is H2.
note that

gHg−1 = {ghg−1 | h ∈ H}

Take for example S4. We have the subgroup {e, (12), (34)(12)(34)}. If we conjugate
this by (13), then

(13){e, (12), (34)(12)(34)}(13) = {e, (23), (14), (14)(23)}

which we can verify is another subgroup.

Exercise 10.3.2. Verify that the multiplication I did above is correct (it takes a long
time to get familiar with Sn and Dn so don’t get worried to just get your hands dirty
and work with them a lot).

Definition 10.3.3. A subgroup H is normal in G (written as H⊴G) if gHg−1 = H∀g ∈
G.

§10.4 Exercises

We are going to do a dive into conjugacy classes and normal groups regarding the
dihedral group next class, so exercises to get familiar with these concepts will be found
in next section.

§10.5 Funny Stuff

Remark 10.5.1. The entire class mistakenly called {e, (12), (34)(1234)} a group. However,
it was all corrected when Dr. Abramson told us that “That [(12)(34) instead of (1234)] is in
my head what I had wrote”
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11 Thursday, May 4th (Class 11)

Today, I’m lecturing! We will talk about the dihedral group and its conjugacy classes.

Exercise 11.0.1. Let G be a group and g, a ∈ G. What is (gag−1)n

Recall that for a group G and H ≤ G, the index of H in G is the number of left cosets
of H and is referred to as [G : H]. We also have that if G is finite, |G| = |G : H||H|.
There is absolutely nothing special about cosets being on the left, and all of the stuff
that we proved earlier about cosets (that they partition a group, they are the same or
disjoint, etc.) can also be applied to right cosets. Thus, it follows that [G : H] is also the
number of right cosets

Remark 11.0.2. There is nothing forcing these left and right cosets to be the exact same
in general, but we will soon analyze a special case in which they are.

Theorem 11.0.3

If [G : H] = 2 then H ⊴G (i.e, gHg−1 = H for all g ∈ G).

Proof. We know that we have two left cosets and two right cosets. For some g /∈ H we
have the two left cosets H and gH and two right cosets H and Hg. Since these sets
partition the group, gH = Hg. Because multiplication is associative,

gH = Hg =⇒ gHg−1 = (Hg)g−1 = H

which is the definition of being a normal subgroup.

§11.1 Dihedral Group

Definition 11.1.1. Define D2n to be the group of symmetries of a regular n-gon. We
have the subgroup R2n = {e, r, r2, ...rn−1} where r is the rotation of 2π/n. Similarly, we
have the element s which is any old reflection.

Theorem 11.1.2

R2n ⊴D2n

Proof. It is sufficient to show that the index of R is two. As we know, if we reflect over
and then rotate we get all of the symmetries on the ‘other side’ of the polygon (the two
sets R and sR). Thus, we have index two and are consequently normal.

Problem 11.1.3. Where’s rs?

Solution. We know that rs is a reflection, so it must be srk for some k ∈ {1, 2, ...n− 1}.
We will find which k specifically in the next problem

Problem 11.1.4. Since we are assuming that rs = srk, we can multiply by s on the
left, yielding srs = rk. Find the k for which (srs) = rk.
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Solution. (srs)a = sras = rak, from our do now. If we let a = k, then srks = rk
2
. Notice

that we could have multiplied by s on the right to rs = srk, giving us that r = srks.
Consolidating, we have

r = srks = rk
2

Thus rk
2−1 = e =⇒ n | k2 − 1. We know that both k = 1 or k = −1 satisfy this

constraint.
if k = 1 we want to find the order of sr. The order can’t be odd, as (sr)m = srm but

the identity cannot invert rm. Thus, m must be even and the smallest m which satisfies
this is 2n (n is an odd prime). However, this is the order of our group, meaning this is a
cyclic group!
If k = −1, we have srks = r−k =⇒ r−ks = srk. This turns out to be one of our

constraints for being a dihedral group, which is being generated by the elements s and r
and having sr = r−1s.

Problem 11.1.5. Find all of the conjugacy classes of D2n

Solution. What can be conjugate to a reflection? Since reflections commute with ea-
chother it would be meaningless to conjugate a reflection with another reflection. Instead,
let’s try conjugating a reflection with a rotation, namely sra.

(sra)rb(sra)−1 = (sra)rb(r−as) = sras = r−a

What this tells us is that by conjugating a rotation by any reflection we get its inverse.
Thus, every rotation is in a conjugacy class with it’s inverse. For the special case of r180
when we are in polygons with an even number of sides, it is alone instead of paired up in
its conjugacy class.
What can be conjugate to a reflection? If we conjugated a reflection sra by rb we get

rbsrar−b = sr−brar−b = sra−2b

Similarly, if we conjugate a reflection sra by srb, we get

srbsra(srb)−1 = r−brar−bs = sr2b−a

.
What does this make of our conjugacy class? Well, we know that sra ∼ srb if a and b

are the same parity (as we are changing by multiples of 2). For polygons with an even
number of sides, this will give us two seperate conjugacy classes of reflections while in
a polygon with an odd number of sides we have all reflections being conjugate to one
another.
Visually, we can think about which points are fixed by each reflection.

Remark 11.1.6. Geometrically, in an odd polygon every axis of symmetry passes through
a vertex and a side (fixing one point– the vertex), while in an even polygon there are two
types of axes for reflection, each corresponding to their own conjugacy class: those that pass
through two vertices (or fix two verticies upon reflection) and those that pass through two
sides (which fix no verticies upon reflection)

This exploration of conjugacy classes has shown us that they have deep insights about
the structure of a group and its elements. As many authors on algebra textbooks say
(and wikipedia), “The study of conjugacy classes of non-abelian groups is fundamental
for the study of their structure”
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12 Monday, May 8th (Class 12)

§12.1 Cauchy’s Theorem

Theorem 12.1.1

Suppose p is a prime and G is a group whose order is divisble by p. Then G has
elements of order p

In order to prove this, we will have to ‘count some stuff’.

§12.1.1 Thing 1

Consider all p-tuples (g1, g2, ..., gp)in G
p (meaning G×G×G...×G)p times) where

g1g2g3...gp = e

. For example, if we were in Z12, since 3 | 12, we have p-tuples like (g4, g6, g2) and
(g5, g7, e).

Problem 12.1.2. How many p-tuples *(which are ordered lists) are there which satisfy
this?

Solution. Remember that groups are closed and every element has inverses. Thus, the
first p− 1 elements you have complete freedom for, and just fix the last element to be
the inverse of the product of all of the previous elements, i.e gp = g−1

p−1 . . . g
−1
2 g−1

1 . Thus,

there are |G|p−1 p-tuples which multiply to the identity.

§12.1.2 Thing 2

Suppose (g, h, i, j, k) is one such 5- tuple which works.

Problem 12.1.3. Find me another.

Solution. We know that since this is the identity, if we invert it its still the identity. So
we have (k−1, j−1, i−1, h−1, g−1). But, we can also conjugate our product by g−1.. Since
the right side is still the identity, (h, i, j, k, g) is another tuple.

Problem 12.1.4. Given a p-tuple, how many p tuples are potentially spawned in this
fashion.

Solution. If all is well, we can cycle through p times. On a bad day, if we had all
(e, e, e, e, e), theres only 1 we can make in this fashion. The p-tuples all go back to the
beginning after cycling p times. This also means that our extreme situations cycle back
in 1 time. Can they cycle back to the beginning in 1 < n < p times?

Problem 12.1.5. Can they cycle back to the beginning in 1 < n < p times?

Solution. According to Joy, if it takes less than p times to cycle fully, that means that n
needs to be a divisor of p. If you cycle back every n turns, you cycle back every an times
(for an integer a), and similarly you cycle back every bp times for b an integer. Since our
factors or p are just 1 and p, this is not possible.
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§12.1.3 Putting our things together

1. We have |G|p−1 p-tuples

2. p | |G|

3. (e, e, ...e) is one of our p-tuples

4. p-tuples tend to spawn in bunches of p

With this, we can prove ∃ elements of order p.

Proof. From our good-day tuples, we have kp tuples where k is an integer. From our
bad-day, we get 1 p tuple. If we didn’t have elements of order p, then we are claiming
that p | np−1 = kp+ 1. Obviously this isn’t possible, so we have to add our number of
elements which are our bad day case (i.e, the elements of order p, yay!). Remember, this
relies on the fact that they come in bunches of 1 or bunches of p.

With this, we have proved that when p divides the order of the group, we must have
elements of order p.

§12.2 Classifying Groups

Theorem 12.2.1

If p is prime, the only groups of order 2p are Z2p and D2p.

Proof. Due to Cauchy, we must have both elements r and s where rp = e and s2 = e.
We have the list of elements e, r, r2, ..., rp−1, s, sr, sr2, ..., srp−1. Where is rs? We showed
that since p is prime, rs = sr or rs = sr−1, which represents the cyclic group of order 2p
and the dihedral group of 2p.

Group theorists want to find all groups of a certain order, and so far we haven’t done
only a couple in the first 20.

§12.3 Groups of Order 15

We don’t have enough to prove this just yet, but we can create our starting ground now
that we have our theorem. Claim: The only group of order 15 is Z15.

We know that from cauchy, we must have an elements of order 3 and order 5 and that
the elements must have order 1, 3, 5, 15. If we are in a non cyclic group of order 15, then
we can only have elements of order 3 or 5.

Let g3 = h5 = e. Our list of elements is thus

e, h, h2, h3, h4

g, gh, gh2, gh3, gh4

g2, g2hg2h2, g2h3, g2h4
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§12.4 Funny Stuff

Remark 12.4.1. Why was the duck a such good detective. Because he always quacked the
case!

Remark 12.4.2. Why was the duck such a good comedian. He made everyone quack up!

Remark 12.4.3. You are so
√
1 + tan2 c.
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13 Thursday, May 11th (Class 13)

H ≤ G is a normal subgroup (written H ⊴G) if ∀g ∈ G, gHg−1 = H or gH = Hg

Recall that in an abelian group all subgroups are normal and that [G : H] = 2 =⇒
H ⊴G.

Theorem 13.0.1

Let H ⊴G and K ≤ G. Define

HK = {hk | h ∈ H, k ∈ K}.

Prove that HK ≤ G.

Proof. The identity is easy.

H ⊴G =⇒ ∀k ∈ GkH = Hk =⇒ ∃h′ such that kh = h′k. Thus

h1k1h2k2 = h1h
′
2k1k2 = (h1h

′
2)(k1k2) ∈ HK.

We are closed, we have our identity, we are associative (because the operation is associa-
tive). To show that we have inverses, (hk)−1 = k−1h−1 = h′−1k−1 ∈ HK.

Definition 13.0.2. Let H ⊴G. Denote G/H (called “G mod H”) = {gH | g ∈ G}.

Theorem 13.0.3

G/H forms a group under the multiplication in G.

§13.1 Quotient Group

Example 13.1.1

4Z ⊴ Z, and our operation is additions. Our cosets are 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z.
Everything in Z are in these cosets. (2 + 4Z+ 3 + 4Z = 1 + 4Z). (2 + 4Z)−1

Definition 13.1.2. Z/nZ is the correct name for Zn.

Proof. To show G/H is a group, we make use of the fact that gH = Hg. Firstly, the
identity is H. For a sanity check.

(gH)H = g(HH) = gH

H(gH) = (Hg)H = (gH)H = gH

For closure,

g1(Hg2)H = g1(g2H)H = g1g2H.
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For inverses,
(gH)−1 = H−1g−1 = Hg−1 = g−1H

.
Thus, these are subgroups (associativity is given).

Example 13.1.3

(Z/8Z)/{0, 4} = {{0, 4}, {1, 5}, {2, 6}, {3, 7}}. What does this look like? It looks like
Z/4Z. These are in fact isomorphic.

Example 13.1.4

D20/R ∼= Z/2Z. Our cosets are the rotations and the reflection. (Recall that D20 is
the dihedral group of order 20 and R is our rotations).

Example 13.1.5

Sn/An
∼= Z/2Z where Sn is the symmetric group and An was the alternating group

(of just even permutations). The cosets are all even permutations.

§13.2 Dihedral group of order 4

The 180 degree rotation commutes with everything. Thus, {e, r180} ⊴ D8. We know
that 8/2 = 4, meaning the quotient group could be one of two groups: Z2 × Z2 or Z4.
Our four cosets are {e, r2}, {r, r3}, {s, sr2}, {sr, sr3}. Also remember that everything in
Z2 × Z2 has order 2, so we can just check the order of every element. After checking, we
see that everything has order 2, meaning they’re isomorphic. We can generalize saying
that D4n/{e, r180} ∼= Zn × Z2

Remark 13.2.1. Remember that elements of the quotient groups are the cosets. When you
multiply the cosets, you multiply the element which translate them. So if you have H ⊴G,
then (aH)(bH) = (ab)H. Alternatively, just multiple every element in the cosets. If you do
that, you will end up with another coset, which in turn can help you determine what you
have translating it by.

§13.3 Funny Stuff

Remark 13.3.1. Remember, Joy, that the index of the normal subgroup is the number of
elements in the quotient group.
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14 Monday, May 15th (Class 14)

Problem 14.0.1. Recall that in an abelian group, all subgroups are normal.

1. Describe R/Z

2. Prove or disprove: All elements of Q/Z have finite order

3. Let Q̃ = {q2 | q ∈ Q}. What is
Q̃×/Q×

The answer to the first is [0, 1) where when you add the number you take just the
fractional part of their sum. For the second, you will have elements of n

m where 0 ≤ n < m.
This element will become 0 after a finite number of additions (m), so it must have finite
order.
For the third one, notice that every non-identity element must have order 2. Every

single coset has a representative that is square free (all of its prime factors only have
an exponent of 1). It turns out that the cosets we can use is nQ̃× where n is squarefree.
We know that 1/n and n are in the same coset, as n ∗ 1/n2 = 1/n. This means that we
don’t need to worry about any of the denominator. As an example,

15Q̃× × 35Q̃× = 21Q̃×

Definition 14.0.2. Circle group: {eiθ | θ ∈ R} under multiplication

§14.1 Centralizer

Let G be a group and g ∈ G. The centralizer of g in G, written as Zg, is

{h ∈ G | gh = hg},

or the set of all elements which commute with g. Moreover, the center of g, written
Z(G) = {h ∈ G | hg = gh ∀g ∈ G}. You can think of the center as the intersection of
all centralizers. For abelian groups, both the center and the centralizers are boring (the
entire group).

Example 14.1.1

Prove Zg ≤ G

Rewrite our condition as ghg−1 = h. If we multiply two elements in the group, h1, h2,
then because of the properties of conjugation, h1h2 = gh1h2g

−1, meaning that we are
closed. Similarly, h−1 is in the group, as we can multiple on both sides of gh = hg by
h−1, which is our condition for being in the group. Finally, our identity commutes with
everything, meaning it must be in the centralizer of g.

Example 14.1.2

In S5, find Z(12)
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We are trying to find all h for which h(12)h−1 = h. When you conjugate a cycle by a
permutation, we have a permutation σ ∈ S5, our cycle will go from (12) to (σ(1)σ(2)).
There are 6 such permutation which leave one and two alone, and the other 6 can be
found because (12) = (21)
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15 Thursday, May 18th (Class 15)

§15.1 Do Now

Example 15.1.1

Let G be a group. If G/Z(G) is cyclic, prove G is abelian.

Solution. This is a cyclic group, so call the coset which generates this gZ(g). Suppose
the order is n, meaning gnZ(g) = Z(g). Since cosets partition the group, every element
in G can be written as gkz. If we multiply this by an arbitrary element glz′,

(gkz)(glz′) = gk+lzz′ = (glz′)(gkz).

Thus, every element commutes with eachother, meaning G is abelian.

Remark 15.1.2. If G is abelian, Z(G) = G and G/Z(G) ∼= {e}.

§15.2 Group Actions

Groups can ‘act’ on other objects.

Definition 15.2.1. Let G be a group and X a set. An action of G on X is a set of
permutations ϕg of X (one for each g in the group) such that

1. If x is in X, ϕe(x) = x

2. If x is in X. for all g, h ∈ G, ϕgh(x) = ϕg(ϕh(x))

Example 15.2.2

Let G = S5, and X = {1, 2, 3, 4, 5}. ϕ(123) takes 1 to 2, 2 to 3, 3 to 1, 4 to 4, and 5
to 5.

Remark 15.2.3. Due to the way that we defined the symmetric group, we would expect
this to work.

Example 15.2.4

Let G = Z3 and X = {a, b} ϕ0 has to leave everything the same. ϕ1 could take a
to b and b to a. According to our second rule, ϕ0(x) = ϕ2(ϕ1(x)), meaning ϕ2 has
to bring a to b and b to a. But, since ϕ1(ϕ1(x)) = ϕ2, ϕ2 must bring a to a and b
to b, so this action is no good. However if we defined every permutation to be the
identity, the rules of an action still hold. This is called the trivial action.
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§15.3 Orbits

Definition 15.3.1. Let x ∈ X. The orbit of x is everything that you can get to with
one of these maps, namely

orb(x) = {ϕg(x) | g ∈ G}.

For our first example, orb(1) = {1, 2, 3} = orb(2) = orb(3)

Example 15.3.2

Say we have our set X being the edges of a cube and Z4 acts on this set where we
have 90 degree rotations. Then, our top edges, side edges, and bottom edges are in
orbits together.

Problem 15.3.3. Can you find a nontrivial action of Z3 on {a, b, c, d, e}?

Solution. Let 1(a) = b, 1(b) = c, 1(c) = a and 2(a) = c, 2(b) = a, 2(c) = b. This gives us 1
orbit of size 3, and two orbits of size 1.

Problem 15.3.4. Let G ≤ S8 where G is generated by (123)(45) and (78). Our orbits
would be {1, 2, 3}, {4, 5}, {7, 8}, {6}. This will be referred to as ’the previous problem’

Theorem 15.3.5

Orbits partition the set, meaning orb(x) =orb(y) if and only if they are in eachother
orbit.

Proof. There has to be some g ∈ G such that ϕg(y) = x, which implies ϕg−1(y) = x.
Take an arbitrary z ∈ orb(x). This is only true if z = ϕh(x) for some h ∈ G. Thus,
ϕg(ϕh(z)) = y, meaning z ∈ orb(y).

§15.4 Stabilizers

Definition 15.4.1. GIven x ∈ X, the stabilizer of x is stab(x) = {g ∈ G | ϕg(x) = x},
i.e all of the elements which do nothing to an element.

Example 15.4.2

In ’the previous problem’, Stab(1) = {e, (45), (78), (45)(78)}.

Theorem 15.4.3

stab(x) ≤ G.

Proof. We have the identity, and if g, h ∈ Stab(x), ϕgh(x) = ϕg(ϕh(x)) = ϕg(x) = x,
meaning that we have closure. By the same reasoning if g ∈ Stab(x), x = ϕe(x) =
ϕg−1ϕg(x) = ϕg−1(x), meaning that we have an closure, an identity, inverses, and we are
associative.
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§15.5 Theorem with a name (Orbit-Stabilizer Theorem)

Theorem 15.5.1

For any x ∈ X, |G| = |Stab(x)||orb(x)|

Remark 15.5.2. The reason we failed with Z3 acting on {a, b} is that any orbit of size 2
would need to divide 3.

Theorem 15.5.3

If orb(x)=orb(y). Then Stab(x) and Stab(y) are conjugate subgroups.

§15.6 Funny Stuff

Remark 15.6.1. Cameron guessed the name of the theorem with a name! (Who would
have thought that after learning orbits and stabilizers our theorem would be named the
orbit stabilizer theorem).

Remark 15.6.2. If a prisoner escapes from prison, drinks apple cider from a jug, and
consumes an apple, its a Con-Jug-Ate!
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16 Monday, May 22nd (Class 16)

Before we address proving the Orbit-Stabilizer theorem, we first return to parity in
the symmetric group.

§16.1 Parity in the Symmetric Group

Theorem 16.1.1

Recall that an element of Sn is even if when it is decomposed into transpositions
it has an even number of transpositions and odd otherwise. Prove that being even
or odd is a well-defined notion (i.e that you cannot split an element into an even
number of transpositions and an odd number of transpositions by decomposing it in
different ways)

Proof. Let Sn act on the Vandermonde polynomial of an ordered set of n variables
x1, x2, ..., xn, which is

P (x1, x2, ..., xn) =
∏

1≤i<j≤n

(xj − xi)

where are action simply permutes the indices of the variables. For instance, when n = 3
our polynomial is (x1−x2)(x2−x3)(x1−x3), and if we permuted the indices by (12) the
polynomial would become (x2 − x1)(x1 − x3)(x1 − x3) = −P (x1, x2, x3), meaning that
transposing it brough the polynomial to the negative of itself. We claim that acting on
this polynomial by a transposition always brings it to the negative of itself.

Lemma 16.1.2

If (ab) is a transposition, (ab)P = −P (where P is our polynomial in question)

Proof. WLOG a < b. We want to analyze what happens to (ab)(xi − xj) with i < j. If
neither of i, j are a, b, nothing happens. Then, we have to split into three cases: j < a,
a < j < b, and b < j

1. Case 1 (j < a): The elements (xj − xa) and (xj − xb) will both be negated, leaving
the polynomial unchanged.

2. Case 2 (a < j < b): We will have (ab) acting on (xa − xj)(xj − xb), which becomes
(xb − xj)(xj − xa), which is still a double negation leaving the polynomial the same.

3. Case 3 (b < j): (ab)[(xa − xj)(xb − xj)] is a double negation just like the first case,
which levae the polynomial the same.

The only case we havent analyzed is (ab)[xa − xb], which negates itself and causes the
entire polynomial to become negative.

■
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Since any element of the symmetric group can be decomposed and can act on the
polynomial, the polynomial can only be positive, corresponding to an even number of
transpositions, or odd, corresponding to an odd number of transpositions. Thus parity is
well defined.

§16.2 Proving the Orbit-Stabilizer Theorem

In class, you all went through the definitions of orbits and stabilizers again and then went
through an example of a permutation subgroup acting on a set of elements, classifying
the size of both the orbit and stabilizer and verifying it works. I will cut to the chase (as
if you need definitions again, you can click here for orbits and click here for stabilizer.

Theorem 16.2.1

Let x ∈ X be acted on by a group G. Then |orb(x)||stab(x)| = |G|

Proof. Suppose that if X = {x1, x2, x3, ...xn}, orb(x1) = {x1, xa, xb, ..., xm}. For every
element g ∈ G, ϕg(x1) ∈ orb(x1), so suppose two elements map to the same place,
meaning ϕg1(x1) = ϕg2(x1). This means that x1 = (ϕg−1

2
(ϕg1)(x1)), implying that

g−1
2 g1 ∈ stab(x1).
Now, if we loook at the left cosets of stab(x1), from what we just showed, g−1

2 g2 ∈
stab(x1) =⇒ g1 ∈ g2stab(x1). But we also know that g1 ∈ g1stab(x1) (since stabilizers
are subgroups), and since left cosets are the same or disjoint, g1stab(x1) = g2stab(x1).

Since every element in the orbit must have an element of g which maps x1 to it, suppose
ga maps x1 to xa, gb maps x1 to xb, and so on. When stab(x) is multiplyed on the left
by any of these elements, since they map x1 to different places they must be different
cosets (as we showed that when they map to the same element the must be the same
coset). Furthermore, every element g must fall into one of these cosets (as the orbit
accounts for every possible place x1 could map with every element of G). Thus, every
element of G falls into one of these cosets and there are |orb(x1)| of them. This means
that |orb(x1)||stab(x1)| = |G|, proving the theorem.

§16.3 Groups acting on themselves

An important aspect of group actions are when groups act on themselves. The usually do
so through left/right multiplication, or conjugation. For the former, for some g, h ∈ G,
ϕg(h) = gh is the action of left multiplication. On the other hand, ϕg(h) = ghg−1 is the
action of conjugation.
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17 Thursday, May 25th (Class 17)

§17.1 Groups acting on themselves by conjugation

Definition 17.1.1. For p prime, a p− group is a group whose order is a power of p.

Theorem 17.1.2

If G is a p− group , then Z(G) is nontrivial (meaning not just the identity).

Proof. We are going to let G act on itself by conjugation, i.e. if g ∈ G and h ∈ G,
ϕg(h) = ghg−1. We are going to look at orbits of ϕg. We also know from the orbit
stabilizer theorem that the size of the orbit necessarily divides the size of the group. This
means that the size of any orbit is a power of p and if we add the sum of sizes of distinct
oribts, we get the size of the group (i.e if |G| = pn, the sum of the sizes of distinct orbits
is pn).

If h ∈ Z(G), then ϕg(h) = ghg−1 = hgg−1 = h, meaning that if h ∈ Z(G) the size of
its orbit is 1. e is in the center, but if this was the only orbit of size 1 then the number
of elements in the group would be 1 mod p but we need it to be divisible by p. Thus,
there must be others.

Remark 17.1.3. It is both necessary and sufficient that for this action |orb(h)| = 1 ⇐⇒
h ∈ Z(G)

Theorem 17.1.4

For p prime, all groups of order p2 are abelian and the only ones are Zp2 and Zp×Zp.

Proof. We know that from our previous theorems we must have an element of order p
and and we must have more than just the identity which commutes with everything.
This means that if we aren’t abliean, the center is neither the center of the group, and it
can’t be one, so the order of the center must be EXACTLY p (as the center is a subgroup
and must divide the order of the group). Suppose |G| = p2, |Z(G)| = p, and because it is
of order p it must be a cyclic subgroup.

Z(G) = ⟨h⟩ where O(h) = p

.

Let g ∈ G, g /∈ Z(G). G/Z(G) will consist of cosets gZ. The cosets wil be able to form
gkZ(G) where k ∈ {0, 1, 2, ..., p− 1}. This is the set of all left cosets of Z(G), meaning
anything in G is of the form grz where z ∈ Z(G). If we multiply two arbitrary elements
grz1 and gsz2. If we multiply them and play around with the commutativity of elements
in the center and powers of g, it can be shown that grz1g

sz2 = gsz2g
rz1. This means

that EVERY pair of elements commutes (because we started with arbitrary elements and
they commuted). The group is therefore abelian, but why is it one of those two? If we
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have an element of order p2, we are cyclic. Otherwise, everything that isnt the identity
has order p.

If every element has order p, we can look at the cyclic subgroups each element generates.
If every element generates the same cyclic subgrop, we would be order p, meaning that
we can take two of the elements and see that their intersection is solely the identity.
Suppose our elements are, g and h, meaning that ⟨g⟩ ∪ ⟨h⟩ = {e}. This also means
that any product of two elements must be different, as if gahb = gchd, some power of g
is another power of h, meaning their intersection is nonempty. This means that there
are p options for each of the exponents and each element is different, meaning we have
classified every element of the group.

§17.2 Remarks

No funny stuff for today as class was a half day and thus went by very quickly. Over
the remainder of the year, we will likely get through items like The Lemma that is not
Burnsides and the first sylow theorem. Have a great memorial day weekend everyone!
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18 Thursday, June 1 (Class 18)

§18.1 Burnside’s Lemma

Lemma 18.1.1

Let G be a finite group which acts on the set X. Let X/G be the set of orbits of X
(i.e each element of X/G is a distinct orbit, which taken together form the entire
set). For any element g ∈ G, let Xg be the set of points that are fixed by g, i.e
{x ∈ X | ϕg(x) = x}. The lemma that is not burnsides states that

|X/G| = 1

|G|
∑
g∈G

|Xg|.

In english, this means that the number of orbits of a set X is the sum of the
number of fixed points for each element g divided by the number of elements in the
group.

Proof. This lemma directly follows from the orbit stabilizer theorem, stating that for an
element x ∈ X,

|orb(x)||stab(x)| = |G|

where orb(x) = {ϕg(x) | g ∈ G} and stab(x) = {g ∈ G | ϕg(x) = x}. The orbit is all of
the places that x can go while the stabilizer is all of the members of the group which
leave x fixed. We now want to use this to describe the number of orbits of a set, the sum
of the number of fixed points for each elements, and the total size of the group.

Lets take a few steps back to what Xg and stab(x) mean. The first is which elements
g fixes, so Xg could be {x1, x2, ..., xn}. stab(x1), on the other hand, are all g ∈ G which
fix x1. meaning stab(x1) could look like {g1, g2, ..., gn}. Each element is fixed by some
amount of g’s (i.e the size of its stabilizer) and each g fixes some amount of x’s (i.e the
size of Xg). Since we are adding up over all g,∑

g∈G
|Xg| =

∑
x∈X

|stab(x)|. (18.1)

This is the first important step in our proof. We want to get things as close as possible
to orbits and stabilizers, so we used a nice counting argument to convert from Xg to
stab(x), namely that counting the number of elements which fix an element can be done
in two ways: counting how many elements of the set are fixed by the elements of the
group, and how many elements of the group fix an element of the set.

Now we are working with the statement

|X/G| = 1

|G|
∑
x∈X

|stab(x)|.

Now, we can utilize the orbit-stabilizer theorem.

∑
x∈X

|stab(x)|. =
∑
x∈X

|G|
|orb(x)|

.
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We can factor |G|, making our new expression

|X/G| =
∑
x∈X

1

|orb(x)|
.

At this point, our equation may look more complicated than before. Is the right side
even an integer? Well, consider if |orb(x1)| = n. This means that the element x1 wil
contribute 1

n . However, the orbit being size n means that there will be n elements for
which we will have to contribute 1

n , meaning that in this distinct orbit all n elements

have contributed
1

n
, meaning this distinct orbit was counted once on the right side. This

is the end of the proof, as now we can see that the expression on the right counts each
distinct orbit exactly once, which is the definition of the left side.

Example 18.1.2

How many distinct ways are there to color a cube with 3 colors up to rotations?

Solution. Let G be the rotations of a cube act on X, the set of all colorings. We want to
count the number of orbits, as if you can rotate from one coloring to another that means
they are in the same orbit. We make use of burnside’s lemma and realize that we just
need to sum up the number of elements fixed by each type of rotation and then divide
by the total number of rotations.
First, what are the rotations of a cube?
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Remark 18.1.3. It is very, very, helpful to have a cube of some sort on hand. Otherwise
many of these rotations (and finding which faces are fixed) are very difficult to visualize.

Now, we need to find how many elements are fixed by each rotation.

• The identity fixes every coloring, so it contributes 36

• The 90 and 270 degree rotations each leave their top and bottom faces fixed,
meaning only the lateral edges all have to be the same color. This means 33 such
elements are fixed and there are 6 such rotations.

• For 180 degree rotations through the center, we have freedom in two of the lateral
edges and the top and bottom, meaning there are 34 elements fixed and 3 such
rotations.

• The 120 and 240 degree fix the three faces touching each vertex on the line of
rotation. That means we have 32 elements fixed and 8 such rotations.

• The 180 degree rotation brings each face to another face, meaning we have 3 pairs
of faces and thus 33 elements fixed and 6 such rotations.

. Thus,

|X/G| = 1

|G|
∑
g∈G

|Xg| = 1

24
(36 + 33 ∗ 6 + 34 ∗ 3 + 32 ∗ 8 + 33 ∗ 6) = 1368

24
= 57

.
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19 Monday, June 5th (Class 19)

Example 19.0.1

You start a new Business - Baniel’s Bracelets! You sell bracelets with 6 beads, each
of which can be any of n colors.

1. How many bracelets if you can rotate the bracelet around your arm?

2. The same as 1 but you can also take it off and flip it?

Solution. From burnsides lemma, we want for the first one the number of elements fixed
by each element of our group action divided by the size of the group. For the first, we
have the rotations of a hexagon and the second D12.

1

6
(n6 + n+ n2 + n3 + n2 + n) =

n6 + n3 + 2n2 + 2n

6
.

For the second, its the same but with rotations. We have two types of reflections, one
which connects two midpoints and one which connects two edges.

1

12
((n6 + n3 + 2n2 + 2n) + 3n3 + 3n4) =

n6 + 3n4 + 4n3 + 2n2 + 2n

12

§19.1 Sylow’s First Theorem

Definition 19.1.1. A p-group is a group where its size is a power of p.

Theorem 19.1.2

Suppose |G| = pnk where p is prime and p ∤ k. Then G has a subgroup of order pn

Lemma 19.1.3

p ∤
(
pnk

pn

)

Proof. Proof. Lets take care of all of the elements which have a factor of p

(pnk)(pnk − p)(pnk − 2p)...(pnk − pn + p)

(pn)(pn − p)(pn − 2p)...(p)
.

Upon inspection each of the top and bottoms have the same amount of p′s as after
factoring out the largest power of p the top and bottom cancel. I.e,

pnk − ap

pn − ap
=
p(pn−1k − a)

p(pn−1 − a)
=

(pn−1k − a)

(pn−1 − a)
,
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where if a is not divisible by p, neither the top nor the denominator contribute factors of
p. ■

We continue with group actions. Our set is

X = {A ⊆ G | |A| = pn},

Meaning that X is all subsets of G such that the size of the subset is pn. Consider x0 ∈ X.
Our group is g ∈ G,ϕg(X0) = {gx | x ∈ X0}

Remark 19.1.4. It is very important to track the exact meanings of the set and how the
group acts on the set. The set is all subsets of the group of size pnk which have size pn. The
group acts on subsets of itself by left multiplication.

As Middelzong stated,

|X| =
(
pnk

pn

)
.

Can we say anything about |orb(x0)|? Well clearly because of orbit-stabilizer,

|orb(x0)| | pnk.

Lets suppose we have X0 ∈ X, where we know |X0| = pn. If we look at where this
set maps to after being acted upon by g, we know that its size is |ϕg(x0)| = pn. These
two sets can intersect nontrivially, meaning their union is at most size 2pn. The way we
defined our action means that we can acess every element in the group as each element is
represented in atleast one element of the orbit. To elaborate, if we wanted to find the
element h and we had the element g in our set X0, we would just use the map ϕhg−1(X0)
and we would be able to find a set in the orbit of X0 which contains any element in the
group.

If we wanted to fill the group, we could take the union of all the sets in the orbit,
meaning we would need atleast k elements as if we take the union all of these sets with
size pn to get pnk elements. So a crude lower bound is

k ≤ |orb(x0)| | pnk

§19.1.1 Lower Bound

Lets suppose we are working with 225. X = {{g1, g2, g3, g4} | gi ∈ G}. Our orbit will
have elements {g1, g2, g3, g4} and {gg1, gg2, gg3, gg4}. We aren’t guarenteed that their
intersections are nonempty, but every element of the group is in atleast one of the elements
of this. When we take the union of all of the orbits, we get the whole group. So, there is
no way we can do this with fewer than 5 elements in the orbit.

Since when we take the union of all the orbits we get the set X, which itself is not a
multiple of p. The orbits are all disjoint, so when we add the sizes of each of these orbits
we must have atleast one thing which is not a multiple of p. Therefore, the size of some
orbit is not a multiple of p.

Lets called the orbit whose size is not a multiple of p as X1. Putting our facts together,
|orb(X1)| = k. The largest thing which is not a multiple of p that divides pnk is k itself,
and we know this thing is atleast k. Thus, the stabilizer is size pn and the stabilizer is
also a subgroup. We found our subgroup of size pn.
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Theorem 19.1.5

Suppose p < q are both prime. Then

1. The group of size q is normal in any group of size pq.

2. If q ̸≡ 1 (mod p) The only group of order pq is cyclic.

We will tackle these two theorems next class.

§19.2 Funny Stuff

Remark 19.2.1. Brennan could have owned a lucrative bead business had he been here.

Remark 19.2.2. Cam was forced to make his duck joke again. I wasnt going to include it
until Sean reminded me that I could just say ”Recall Cam’s Duck joke.” (Thanks Sean!)
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20 Thursday, June 8th (Class 20)

§20.1 Theorems from Last Class

The whole class was dedicated to proving this one theorem.

Theorem 20.1.1

Let q < p be primes. The only groups of order pq are cyclic unless p ≡ 1 (mod q)

Proof. Let G be a group of order pq. We know by Cauchy’s theorem that there exist
elements of order p and order q. Let gq = hp = e. We claim that ⟨h⟩⊴G.

Lemma 20.1.2

⟨h⟩⊴G.

Proof. Suppose k is an element of order p with k ̸∈ ⟨h⟩. Then ⟨k⟩ ∩ ⟨h⟩ = {e}. Since
these are both subgroups, the size of their intersection (which is a subgroup) must divide
the order of both of the subgroups we are intersecting. Since they are both primes, the
only element they share is the identity.

Consider the elements kahb, kchd where a, b, c, d ∈ {0, 1, 2, ..., p− 1}.. If kahb = kchd

then from what we proved in the last paragraph, a = c, b = d. This gives us p2 different
elements, but because q < p =⇒ pq < p2, we have more elements than we did originally.
Oops! This means that there cannot be another subgroup of order p.

Since there is only one subgroup of order p, if we conjugated ⟨h⟩ we get another
subgroup which is order p, meaning ∀a ∈ G a⟨h⟩a−1 = ⟨h⟩. This means ⟨h⟩⊴G.

■

⟨h⟩⊴G, which means ghg−1 = ha for some a ∈ {1, 2, ..., p− 1}. If a = 1 then gh = hg,
meaning grhs commutes. Furthermore, grhs = gthu only when r = t and s = u. This
gives us pq elements and the group is size pq, so every element is in this form. That
means (gh)n = e ⇐⇒ p | n & q | n =⇒ o(gh) = pq. This means that the group is
cyclic.

However, that is when we suppose a = 1. Now suppose not, meaning ghg−1 = ha, a ̸= 1.
In our discussion of conjugation and conjugacy classes a while ago, we showed that given
ghg−1 = ha and that (ghg−1)a = ghag−1, we now have that g2hg−2 = ghag−1 = ha

2
,

and since gq is the identity, h = gqhg−q = ha
q
. This means ha

q−1 = e.

We also know that the order of h is p. This means that p | aq − 1. From Fermat’s
Little Theorem, we also know that ap−1 ≡ 1 (mod p) and from the previous sentance,
aq ≡ 1 (mod p).

Assume q ̸| (p− 1). Then because q is prime, gcd((p− 1), q) = 1, meaning by Bezout’s
Lemma,

∃r, s ∈ Z r(p− 1) + sq = 1,

meaning that

a1 ≡ ar(p−1)+sq ≡ (ap−1)r ∗ (aq)s ≡ 1 (mod p).
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But we assumed a ̸≡ 1! Uh oh! This makes sense as the dihedral group of order 2p for
p some odd prime is not abelian nor cyclic (and p is always 1 mod 2). The next best
item is 21, which we will discuss next time (as 7 is 1 mod 3).

§20.2 Funny Stuff

Remark 20.2.1. Brennan was quite displeased of the repeated use of variable names. This
isn’t VSCode, Brennan! We aren’t being ‘overly restrictive’. Thankfully, Dr. Abramson
became cautious and started creating many names for many variables.
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21 Monday, June 12th (Class 20.5)

§21.1 The Futurama Theorem

Thank you to Brennan for preparing this lecture. Much of this primer was taken directly
from the Futurama Wiki. Futurama is an American animated science fiction sitcom
created by Matt Groening for the Fox Broadcasting Company and later revived by
Comedy Central. The Futurama theorem is a real-life mathematical theorem invented by
writer Ken Keeler (who holds a PhD in applied mathematics from Harvard), purely for
use in the Season 6 episode ”The Prisoner of Benda”.
In the episode ”The Prisoner of Benda”, Professor Farnsworth and Amy create a

mind-switching machine, only to afterwards realise that when two people have switched
minds, they can never switch back with each other. Throughout the episode, the Professor
and a few mathematicians try to find a way to solve the problem using two or more
additional bodies, and, in the end, the solution is shown both in action and on the board.
The theorem proves that, regardless of how many mind switches between two bodies
have been made, they can still all be restored to their original bodies using only two
extra people, provided these two people have not had any mind switches prior (assuming
two people cannot switch minds back with each other after their original switch).
First, lets label the people who are present

1. Michael

2. Shawn

3. Daniel

4. Cam

5. Devon

6. Joy

7. Krish

8. Gabe

9. Handy

10. Kimberly

Now, we begin to swap them. (Terri and Sam will be special people who are left alone
now)
Michael and Gabe Swap
Shawn and Daniel Swap
’Daniel’ swaps with Cam
’Cam’ swaps with Devon
’Devon’ swaps with Krish
’Krish’ swaps with Joy
’Gabe’ swaps with Shawn
Handy swaps with Daniel
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Kimberly swaps with Cam
This can be represented by

(4 10)(3 9)(2 8)(6 7)(6 10)(5 7)(4 5)(3 4)(2 3)(1 8)

(1264938)(5 10 7)

The two bodies cannot be in the same machine but the two minds can be. How many
extra bodies do we need to make everything back to normal?
Let m be the number of extra bodies

1. If m = 0, then if (12) we can’t do anything.

2. If m = 1, then if we started with (12), the only options we can use are (2X) or
(1X), which we can’t do anything

Now we are in the case that m = 2. If we have two additional people X and Y . It
turns out that (xy)(2x)(1y)(2y)(1x) = (12). So this works out so far.
What if we had a k-cycle?
WLOG we are trying to invert θ = (12...k). Fix some variable i such that 1 < 1 < k.

Let α = (1x)(2x)...(ix) and β = ((i+ 1)y)((i+ 2)y)...(ky).

α = (i(i− 1)...21x)

β = (k(k − 1)...(i+ 1)iy)

Consider π = αβ(i+ 1 x)(1 y)
Lets look at where an element t is taken by one of these permutations.
If t ∈ {2, 3..., i}, then π(t) = αβ(t) = α(t) = t− 1 = θ−1(t)
If t ∈ {i+ 2, ...k} then π(t) = αβ(t) = α(t− 1) = t− 1 = θ−1(t)
If t = 1 then π(1) = αβ(y) = α(k) = k = θ−1(t) If t = i+ 1 then π(i+ 1) = αβ(x) =

α(x) = i = θ−1(t) If t = x then π(x) = y and by pidgeonhole and π(y) = x Thus,
θ−1 = (xy)π.
What if we have more cycles in our permutation? If the number of cycles is even,

σ−1 = πr...π2π1, and if the number of cycles is odd then its σ−1 = (xy)πr...π2π1
In class we actually untangled this mess, but you as the reader could try it for yourself.
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22 Thursday, June 15th (Class 21)

Definition 22.0.1. A free group over a given set consists of all ‘words’ that can be
built from members of the set, considering two words to be different unless their equality
follows from the group axioms. The members of the set are called generators of the free
group, and the number of generators is the rank of the free group.

Example 22.0.2

Suppose we have the free group of the letters in the english alphabet (a through z)
such that every generator has order two. Furthermore, suppose that all fifty states
(which are words) are the identity of the group. What is this group isomorphic to?

For example, a nice starting point could be mississippi. Using our conditions, e =
mississippi = m, meaning that we can erase the m from every word as it is the identity.

Solution. It turns out that after a lot of simplification this group is Z2. The only thing
which remains is q, which does not appear in any of the states. Everything else is equal
to the identity.
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